<acronym id="2gwac"><center id="2gwac"></center></acronym>
<acronym id="2gwac"><center id="2gwac"></center></acronym>
華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (10): 109-113 DOI10.13245/j.hust.201019

欄目:船舶與海洋工程
基于Kriging代理模型的艦船桅桿雷達隱身優化
杜曉佳 , 朱顯明 , 丁 凡 , 廖章奇
中國艦船研究設計中心,湖北 武漢 430074
摘要 為降低目標雷達隱身優化計算消耗,將Kriging代理模型與自適應遺傳算法(AGA)相結合,構建基于代理模型的雷達波隱身優化快速計算方法.以典型艦船封閉式桅桿為雷達隱身優化對象,以評估角域內雷達散射截面積(RCS)均值為優化目標,在相同初始條件下,分別用AGA和AGA-Kriging方法進行100次重復優化計算.結果表明:AGA-Kriging對電磁散射特性計算次數降低56.81%,并保持良好準確性和穩定性;與初始方案相比,優化后艦船桅桿雷達散射截面積均值降低61%,證明了該方法的良好適用性
關鍵詞 艦船桅桿 ;雷達隱身 ;代理模型 ;優化 ;遺傳算法
Radar stealth optimization of warship mast based on Kriging surrogate model
DU Xiaojia , ZHU Xianming , DING Fan , LIAO Zhangqi
China Ship Development and Design Center,Wuhan 430074,China
Abstract To reduce the computational cost of target radar stealth optimization,Kriging surrogate model and adaptive genetic algorithm (AGA) were combined to construct a rapid calculation method for radar wave stealth optimization based on surrogate model.The typical closed mast of warship was taken as the optimization object for radar wave stealth,and the average of radar cross section (RCS) in the domain angle was evaluated as the optimization target.Under the same initial conditions,100 repeated optimization calculations were performed by using AGA and AGA-Kriging methods,respectively.Results show that the AGA-Kriging method can reduce the number of target electromagnetic scattering calculation by 56.81%,while maintains good accuracy and stability.Compared with the original design,the radar cross section of the optimized mast is reduced by 61%,verifing the feasibility of Kriging surrogate model.
Keywords warship mast ; radar stealth ; surrogate model ; optimization ; genetic algorithm
基金資助國家自然科學基金資助項目(61273241)

中圖分類號U662.2
文獻標志碼A
文章編號1671-4512(2020)10-0109-05
參考文獻
[1] 韓忠華.Kriging模型及代理優化算法研究進展[J].航空學報,2016,37(11):3197-3225.
[2] QIN S,ZHANG Y,ZHOU Y L.Dynamic model updating for bridge structures using the Kriging model and PSO algorithm ensemble with higher vibration modes[J].Sensors,2018,18(6):1-15.
[3] MUKHOPADHYAY T,CHAJRABORTY S,DEYS.A critical assessment of Kriging model variants for high- fidelity uncertainty quantification in dynamics of composite shells[J].Archives of Computational Methods in Engineering,2017,24(3):495-518.
[4] 張曉東,權曉波,王占瑩.代理模型在水下航行體空泡壓力預示的應用研究[J].船舶力學,2018,22(1):12-21.
[5] 王剛成,馬寧,顧解忡.基于Kriging代理模型的船舶水動力性能多目標快速協同優化[J].上海交通大學學報,2018,52(6):666-673.
[6] 張峰,何書韜,劉均,等.基于代理模型的集成上層建筑開口群角隅應力分析[J].中國艦船研究,2015,10(5):41-46.
[7] 易平,楊濰寧,謝東赤.基于代理模型的工程結構可靠性分析[J].大連理工大學學報,2018,58(3):269-276.
[8] MEHDI P,NADER K,MAJID K.Broadband RCS reduction of microstrip antenna using coding frequency selective surface[J].IEEE Antennas and Wireless Propagation Letters,2018:17(8):1382-1385.
[9] LI Z,GUAN A,GE H.Wavelength selection of amino acid THz absorption spectra for quantitative analysis by a self-adaptive genetic algorithm and comparison with mwPLS[J].Microchemical Journal,2017,132:185-189.
[10] 安海,閻朝一,孫鵬.基于新型自適應遺傳算法的混合可靠性優化模型[J].航空學報,2018,39(7):204-218.
[11] 杜曉佳.艦船懸臂結構隱身與動力特性優化[D].大連:大連理工大學圖書館,2013.
文獻來源
杜曉佳, 朱顯明, 丁 凡, 廖章奇. 基于Kriging代理模型的艦船桅桿雷達隱身優化[J]. 華中科技大學學報(自然科學版), 2020, 48(10): 109-113
DOI:10.13245/j.hust.201019
时时彩票