<acronym id="2gwac"><center id="2gwac"></center></acronym>
<acronym id="2gwac"><center id="2gwac"></center></acronym>
華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (10): 50-56 DOI10.13245/j.hust.201009

欄目:機械與材料工程
基于GA-BFGS的六桿下肢康復機構設計
趙 萍 , 宋皖兵 , 顧晨晨 , 侯其濤
合肥工業大學機械工程學院,安徽 合肥 230009
摘要 提出一種基于遺傳-擬牛頓(GA-BFGS)混合算法的Watt-Ⅰ型六桿機構優化算法,并針對多自由度下肢康復機器人結構復雜、控制困難、造價昂貴等問題,設計了兩種單自由度Watt-I型六桿下肢康復機構.首先,由目標步態軌跡和Watt-I型六桿機構運動學模型構造兩種目標函數;然后,結合遺傳算法全局搜索性和擬牛頓算法局部細致尋優的特點,使用GA-BFGS混合算法對目標函數進行迭代尋優,得到優化后的機構尺寸;最后,分別將兩種下肢康復機構應用于下肢康復機器人,并對其進行了結構設計.結果表明:兩種下肢康復機構都能較好地復現目標步態軌跡,一種側重于復現其時序,另一種側重于復現其形狀,這驗證了該算法對于Watt-I型六桿機構軌跡綜合問題的有效性.
關鍵詞 下肢康復機器人 ;Watt-I型六桿機構 ;遺傳算法 ;擬牛頓算法 ;優化設計 ;步態軌跡
Design of six-bar mechanisms for lower limb rehabilitation based on GA-BFGS
ZHAO Ping , SONG Wanbing , GU Chenchen , HOU Qitao
School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China
Abstract An optimization algorithm for Watt-I six-bar mechanism based on hybrid algorithm of genetic algorithm (GA) and Broyden Fletcher Goldfarb Shanno(BFGS) method was proposed,and in view of the complex structure,difficult control and expensive cost of multi-degree-of-freedom (DOF) lower limb rehabilitation robots,two kinds of 1-DOF Watt-I six-bar mechanisms for lower limb rehabilitation were designed.First,two objective functions were constructed according to the target gait trajectory and the kinematic model of Watt-I six-bar mechanism.Then,by combining global searching property of GA and local careful searching property of BFGS method,objective functions were executed for iterative optimization by GA-BFGS hybrid algorithm,and the optimal size of mechanisms was obtained.Finally,two lower limb rehabilitation mechanisms were applied to lower limb rehabilitation robots respectively,and both structures were designed.Results show that both lower limb rehabilitation mechanisms can reproduce the target gait trajectory favorably,with one focusing on its time sequence,and the other focusing on its shape,which verifies the effectiveness of this algorithm to trajectory synthesis for Watt-I six-bar mechanism.
Keywords lower limb rehabilitation robot ; Watt-I six-bar mechanism ; genetic algorithm ; quasi-Newton method ; optimal design ; gait trajectory
基金資助國家自然科學基金資助項目(51775155);安徽省重點研發計劃資助項目(201904b11020035)

中圖分類號TH112
文獻標志碼A
文章編號1671-4512(2020)10-0050-07
參考文獻
[1]陳建偉,許紅梅,陳曉琳,等.早期認知功能訓練對腦卒中康復的作用[J].中華護理雜志,2012,47(3):201-203.
[2]王勇,梁啟松,姜禮杰,等.一種新型下肢康復機器人的機構設計與分析[J].華中科技大學學報(自然科學版),2018,46(12):13-17.
[3]ZOSS A,KAZEROONI H,CHU A.On the mechanical design of the Berkeley lower extremity exoskeleton[C]// Proc of International Conference on Robotics and Auto- mation.Barcelona,Spain:IEEE,2005:4338-4344.
[4]WANG H,SHI X,LIU H,et al.Design,kinematics,simulation,and experiment for a lower-limb rehabilitation robot[J].Journal of Systems and Control Engineering,2011,225(6):860-872.
[5]YOON J,NOVANDY B,YOON C H,et al.A 6-DOF gait rehabilitation robot with upper and lower limb conne- ctions that allows walking velocity updates on various terrains[J].IEEE/ASME Transactions on Mechatronics,2010,15(2):201-215.
[6]李力力.基于人體生理參數的下肢康復機器人設計與仿真分析[D].天津大學圖書館,2018.
[7]秦濤,張立勛.考慮跖趾關節運動的踏板式步行康復機器人運動規劃[J].機器人,2014,36(3):330-336.
[8]項忠霞,邵一鑫,李力力.單自由度可調下肢康復機器人機構優化設計[J].天津大學學報:自然科學與工程技術版,2017,50(8):877-884.
[9]史洪宇,賀前華,魏曉慧.基于遺傳-擬牛頓混合算法的到達時間差定位[J].計算機工程,2011,37(11):220-222.
[10]王憲彬,施樹明,劉麗,等.基于遺傳算法和擬牛頓法的車輛動力學平衡點混合求解方法[J].機械工程學報,2014,50(4):120-127.
[11]姜禮杰,王良詣,王勇,等.一種混合輸入并聯擬人步態康復機器人的機構設計與分析[J].機器人,2016,38(4):495-503.
[12]浙江大學,杭州師范大學.GB/T 12985—1991在產品設計中應用人體尺寸百分位數的通則[S].北京:中國標準出版社,1991.
[13]中國標準化與信息分類編碼研究所.GB 10000—1988 中國成年人人體尺寸[S].北京:中國標準出版社,1988.
[14]SHULL P B,JIRATTIGALACHOTE W,HUNT M A,et al.Quantifiedself and human movement:a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention[J].Gait & Posture,2014,40(1):11-19.
[15]鄭文緯,吳克堅.機械原理[M].7版.北京:高等教育出版社,2012.
[16]XU L S,MEI T,WEI X M,et al.A bio-inspired biped water running robot incorporating the Watt-I planar linkage mechanism[J].Journal of Bionic Engineering,2013,10(4):415-422.
文獻來源
趙 萍, 宋皖兵, 顧晨晨, 侯其濤. 基于GA-BFGS的六桿下肢康復機構設計[J]. 華中科技大學學報(自然科學版), 2020, 48(10): 50-56
DOI:10.13245/j.hust.201009
时时彩票