<acronym id="2gwac"><center id="2gwac"></center></acronym>
<acronym id="2gwac"><center id="2gwac"></center></acronym>
華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (10): 1-6 DOI10.13245/j.hust.201001

欄目:控制與信息工程
基于滑模方法與跟蹤微分器的時間約束制導律
王永驥 , 安炳合 , 劉磊 , 王博
華中科技大學 a.人工智能與自動化學院;b.多譜信息處理技術國家重點實驗室,湖北 武漢 430074
摘要 針對具有攻擊時間約束的導彈末制導問題,設計了一種基于滑模方法與新型跟蹤微分器的制導律.首先,給出了導彈-目標相對運動模型,在此基礎上根據已飛行時間加剩余飛行時間等于期望攻擊時間的思想選取滑模變量,滑模變量收斂后,可以滿足攻擊時間約束;然后,設計滑模制導律保證滑模變量的收斂性,并對制導律的奇異性進行了分析;為了獲得視線角速率,提出了一種基于反雙曲正弦函數的新型跟蹤微分器;最后,在數值仿真中使用該制導律對導彈進行控制.仿真結果證明該制導律能夠使制導過程滿足攻擊時間的要求.
關鍵詞 制導律 ;攻擊時間約束 ;剩余飛行時間 ;滑模方法 ;新型跟蹤微分器
Time-constraint guidance law based on sliding mode method and tracking differentiator
WANG Yongji , AN Binghe , LIU Lei , WANG Bo
a.School of Artificial Intelligence and Automation;b.National Key Laboratory of Science and Technology on Multispectral Information Processing,Huazhong University of Science and Technology,Wuhan 430074,China
Abstract Aiming at solving the terminal guidance problem with attack time constraint,a guidance law based on the sliding mode method and new tracking differentiator was designed.Firstly,the missile-target relative motion model was introduced.The sliding mode variable was chosen based on the idea that the sum of the already flight time and the remaining flight time was equal to the expected flight time.When the sliding mode variable converged to the origin,the attack time constraint could be satisfied.Then,the sliding mode guidance law was designed to ensure the convergence of the sliding mode variable,and the singularity of the guidance law was analyzed.To obtain the line of sight rate,a new tracking differentiator based on inverse hyperbolic sine function was proposed.Finally,the missiles were controlled by the proposed sliding mode guidance law for numerical simula- tions.Simulations results show that the guidance process can meet the requirements of attack time by using the proposed guidance law.
Keywords guidance law ; attack time constraint ; remaining flight time ; sliding mode method ; new tracking differentiator
基金資助國家自然科學基金資助項目(61873319,61903146,61803162)

中圖分類號V448.2
文獻標志碼A
文章編號1671-4512(2020)10-0001-06
參考文獻
[1] 陳升富,劉丹,常思江.考慮視場角約束下的攻擊時間控制制導律[J].彈道學報,2018,30(4):7-12.
[2] CHO N,KIM Y.Modified pure proportional navigation guidance law for impact time control[J].Journal of Guidance Control & Dynamics,2016,39(4):852-872.
[3] HU Q,HAN T,XIN M.New impact time and angle guidance strategy via virtual target approach[J].Journal of Guidance,Control,and Dynamics,2018,41(8):1755-1765.
[4] SALEEM A,RATNOO A.Lyapunov-based guidance law for impact time control and simultaneous arrival[J].Journal of Guidance,Control,and Dynamics,2015:39(1):162-172.
[5] KIM M,JUNG B,HAN B,et al.Lyapunov-based impact time control guidance laws against stationary targets [J].IEEE Transactions on Aerospace and Electronic Systems,2015,51(2):1111-1122.
[6] XIAO C,JIN W.Optimal control based guidance law to control both impact time and impact angle[J].Aerospace Science and Technology,2019(84):454-463.
[7] TEKIN R,ERER K S,HOLZAPFEL F.Impact time control with generalized-polynomial range formulation [J].Journal of Guidance,Control,and Dynamics,2018,41(5):1188-1193.
[8] HYEONG G K,JIN K H.Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view[J].IEEE Transactions on Aerospace and Electronic Systems,2019,55(1):82-94.
[9] 趙妍,捷聯導引頭解耦系統的研制[D].哈爾濱:哈爾濱工程大學圖書館,2007
[10] 查世政,王永驥,蘇茂.基于Kriging濾波的高精度視線轉率估計方法[J].計算技術與自動化,2014,33(4):20-25.
[11] ZARCHAN P.Tactical and strategic missile guidance [M].American Institute of Aeronautics and Astronautics,2016.
[12] ZHANG X,LIU M,LI Y.Sliding mode control and Lyapunov based guidance law with impact time constraints [J].Journal of Systems Engineering and Electronics,2017,28(6):1186-1192.
[13] 李轅,趙繼廣,白國玉.基于預測碰撞點的剩余飛行時間估計方法[J].北京航空航天大學學報,2016,42(8):1667-1674.
[14] HOU Z W,LIU L,WANG Y J.Terminal sliding mode control based impact time and angle constrained guidance [J].Aerospace and Technology,2019(93):1-10.
[15] CHO D,KIM H J.Nonsingular sliding mode guidance for impact time control[J].Journal of Guidance,Control,and Dynamics,2015,39(1):61-68.
[16] BU X W,WU X Y,CHEN Y X,et al.Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J].Inter- national Journal of Control,Automation and Systems,2015,13(3):595-602.
[17] SALEEM A,ATNOO A.Lyapunov-based guidance law for impact time control and simultaneous arrival[J].Journal of Guidance Control and Dynamics,2015,39(1):1-9.
文獻來源
王永驥, 安炳合, 劉磊, 王博. 基于滑模方法與跟蹤微分器的時間約束制導律[J]. 華中科技大學學報(自然科學版), 2020, 48(10): 1-6
DOI:10.13245/j.hust.201001
时时彩票